jueves, 7 de noviembre de 2013

Nuestro universo

NUESTRO UNIVERSO

Forma general una estrella
Una estrella es un gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior. El Sol es una estrella. Con la única excepción del Sol, las estrellas parecen estar fijas, manteniendo la misma forma en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios relativos de posición se perciben sólo a través de los siglos.

Sistemas estelares
Un sistema estelar (binario o múltiple) es la agrupación de dos o más estrellas que orbitan en torno a un centro de gravedad común,1 ligadas por lo tanto por la fuerza de gravedad. Un gran número de estrellas vinculadas por la gravitación se denomina un cúmulo estelar o una galaxia, si bien, en un sentido extenso ambos son sistemas estelares.

Agrupaciones estelares
Son grupos de estrellas ligadas entre sí por la gravedad. A veces también las liga su origen.
Se los suele llamar cúmulos estelares. Hay abiertos y cerrados.

Las asociaciones
Son grupos de estrellas con características físicas similares y que se encuentran reunidas en una cierta región del espacio.Tienen una densidad bastante menor y no están caracterizados por una estructura particular.

Temperatura de las estrellas

La temperatura superficial de las estrellas
Es posible calcular la temperatura superficial de las estrellas mediante la explicación de las leyes de radiación: la ley de WIEN presenta problemas debido al intervalo de longitud de onda. La ley de STEFAN-BOLTZMANN se emplea cuando se conoce la distancia y dimensiones de las estrellas. La ley de BLANK es la más utilizada para determinar temperatura por intermedio de colores.

La temperatura superficial de una estrella se puede establecer midiendo la distribución de la intensidad del fondo continuo del espectro. Según una ley descubierta por W. Wien en el siglo XIX, la longitud de onda del máximo de intensidad es inversamente proporcional a la temperatura absoluta de la fuente. En rigor, la ley de Wien sólo es válidad para la radiación emitida por un cuerpo ideal denominado cuerpo negro, que absorbe toda la radiación que recibe y que sirve a los físicos como referencia.
El nombre de "cuerpo negro" se debe a la idea de que cuando no está suficientemente caliente para emitir luz propia, el cuerpo aparece negro, sin embargo, las estrellas normales (excluidas las novas , las estrellas neutrónicas , etc) se comportan aproximadamente como cuerpos negros.
Para establecer la longitud de onda que corresponde al máximo no hace falta medir la intensidad a lo largo de todo el espectro; basta medirla en dos longitudes de onda y calcular la posición del máximo a partir de la relación entre estas dos intensidades. En la práctica, se determina el índice de color (B-V) que, como se sabe, es la relación entre la intensidad en el azul (B) y en la lua amarilla (V), expresada como diferencia de magnitud.
Una sencilla fórmula permite pasar del índice de color a la temperatura, que así calculada recibe el nombre de temperatura de color.

Principales criterios de la clasificación espectral.

Clasificación de los espectros estelares

Una de las maneras de clasificar las estrellas es por medio de su espectro. Esta clasificacion fue desarrollada inicialmente en la Universidad de Harvard, y posteriormente se fue perfeccionando hasta llegar a la actual clasificación completa.

B-V es el indice de color (diferencia entre la mag azul y mag visual de la estrella).
Clasificación de los espectros estelares
Las estrellas se clasifican según su temperatura, de las más calientes a las más frías como:
Tipos               O          B          A          F          G          K         M


Diagrama de Hertzprung–Russell

Es un grafico bidimensional que representa la relación entre el índice de calor de una estrella (sobre las abscisas, aumentando hacia la derecha), por esta razón se lo conoce también como diagrama color- magnitud debido a la relación que existe entre índice de color, temperatura efectiva y tipo espectral, cualquiera de ellos puede usarse indistintamente sobre el eje de las abscisas.

Estrellas

La masa de las estrellas

La masa de una estrella es la cantidad de gramos de materia que posee. Es un número difícil de obtener, ya que la luz que recibimos de los astros no nos dice nada acerca de ese valor. Hasta hoy ha resultado imposible determinar la masa de una estrella en forma tan directa y precisa como lo hacemos con el sol.

La estructura interna de las estrellas

Para conocer las condiciones para la estabilidad de una estrella es importante conocer cuál es el proceso que le permite a estos astros generar anergia y también entender las causas por si continuidad durante un lapso prolongado. La energía estelar es el resultado de TRANSFORMACIONES NUCLEARES que se efectúan en el núcleo. Se debe estudiar la estructura interna de las estrellas

El interior de las estrellas

Desde la Tierra solo es posible observar una porción de la superficie de las estrellas. Para resolver el problema debe tenerse en cuenta toda la información que pueda obtenerse del estudio de las estrellas: forma, dimensiones, movimiento, energía irradiada, temperatura, masa y composición química. Además las leyes físicas son indispensables para construir un modelo de estructura interna.

Estimación  del tiempo de vida de una estrella

TIEMPO DE VIDA DE UNA ESTRELLA: t (años)= 10 elevado a la 10.Masa/ luminosidad.

Queda expresada la relación proporcional entre la edad y la masa e inversamente proporcional con la generación de energía.

Resumen esquemático sobre la evolución estelar

Resumen esquemático sobre la evolución estelar.


En astronomía, se denomina evolución estelar a la secuencia de cambios que una estrella
experimenta a lo largo de su existencia.
Durante mucho tiempo se pensó que las estrellas eran enormes bolas de fuego perpetuo. En el siglo XIX aparecen las primeras teorías científicas sobre el origen de su energía: Lord Kelvin y Helmholtz
propusieron que las estrellas extraían su energía de la gravedad contrayéndose gradualmente. Pero dicho mecanismo habría permitido mantener la luminosidad del Sol durante únicamente unas decenas de millones de años, lo que no concordaba con la edad de la Tierra medida por los geólogos, que ya entonces se estimaba en varios miles de millones de años. Esa discordancia llevó a la búsqueda de una fuente de energía distinta a la gravedad; en la década de 1920 Sir Arthur Eddington propuso la energía nuclear como alternativa. Hoy en día sabemos que la vida de las estrellas está regida por esos procesos nucleares y que las fases que atraviesan desde su formación hasta su muerte dependen de las tasas de los distintos tipos de reacciones nucleares y de cómo la estrella reacciona ante los cambios que en ellas se producen al variar su temperatura y composición internas. Así pues, la evolución estelar puede describirse como una batalla entre dos fuerzas: la gravitatoria, que desde la formación de una estrella a partir de una nube de gas tiende a comprimirla y a conducirla al colapso gravitatorio, y la nuclear, que tiende a oponerse a esa contracción a través de la presión térmica resultante de las reacciones nucleares. Aunque finalmente el ganador de esta batalla es la gravedad (ya que en algún momento la estrella no tendrá más combustible nuclear que emplear), la evolución de la estrella dependerá, fundamentalmente, de su masa inicial y, en segundo lugar, de su metalicidad y su velocidad de rotación así como de la presencia de estrellas compañeras cercanas.

Las estrellas de neutrones




Una estrella de neutrones es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. La masa original de la supernova debe ser mayor a 9 ó 10 masas solares y menor que un cierto valor que depende de la metalicidad. Las estrellas con masas menores a 9-10 masas solares evolucionan en enanas blancas envueltas, al menos por un tiempo, por nebulosidades (nebulosas planetarias), mientras que las de masas mayores evolucionan en agujeros negros.

Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares y un radio de entre 20 y 10 km (análogamente a lo que ocurre con las enanas blancas, a mayor masa corresponde un menor radio).

Estrellas variables

Estrellas variables:


Las estrellas variables son estrellas que experimentan una variación en su brillo en el transcurso del tiempo. Algunas son muy conocidas y son el "prototipo" de una clase de variables, como Algol (Beta Persei), algólidas, Mira (Tau Ceti), tipo Mira, Delta Cephei, cefeidas.
 
La mayoría de las estrellas tienen una luminosidad prácticamente constante. El Sol, nuestra estrella más cercana, es un buen ejemplo de esos astros que experimentan poca variación (usualmente sólo un 0.1% dentro de su ciclo solar, que dura 11 años). Sin embargo, muchas otras estrellas experimentan variaciones significativas de luminosidad, por lo cual son conocidas como estrellas variables.
Las estrellas variables de una constelación se denominan por el orden de descubrimiento si no tienen nombre propio. Si no es así se nombrarán con el alfabeto desde la R a Z, y si hay más se colocará doble letra: RR, RS, RT... ZZ. Si estas resultaran cortas, se haría el procedimiento de doble letra desde a la A a P, eliminando J. Esto hace un total de 334 estrellas, si hubiera más, se llamaría V, seguido del número de descubrimiento y el genitivo de la constelación.

CARACTERÍSTICAS: interesa conocer como es el cambio de su magnitud durante el trascurso de tiempo en que es detectada esa variación, la representación grafica de las fluctuaciones de brillo con respecto al tiempo se denomina curva de luz de la estrella.
Si la magnitud es variable, el intervalo de tiempo empleado por la estrella en repetir su máximo o mínimo brillo, se denomina periodo. La amplitud de la variación luminosa la diferencia entre la magnitud en el máximo y en el mínimo.

CLASIFICACIÓN: las estrellas variables se clasifican en.
Éstas pueden ser intrínsecas o extrínsecas.
• Estrellas variables intrínsecas: son aquellas en las que la variabilidad es causada por cambios en las propiedades físicas de las propias estrellas. Esta categoría puede dividirse en tres subgrupos:
o Variables pulsantes: aquellas cuyo radio se expande y se contrae como parte de su proceso evolutivo natural.
o Variables eruptivas: aquellas que experimentan erupciones en sus superficies, como llamaradas o eyecciones de materia.
o Variables cataclísmicas: aquellas que experimentan algún cambio cataclísmico de sus propiedades físicas, como las novas y las supernovas.
• Estrellas variables extrínsecas: son aquellas en las cuales la variabilidad es causada por propiedades externas, como la rotación o eclipses. Existen dos subgrupos dentro de esta categoría:
o Binarias eclipsantes: aquellas en las cuales, según se ven desde la Tierra, una estrella del par eclipsa a la otra ocasionalmente debido a su traslaciones orbitales.
o Variables rotantes: aquellas cuya variabilidad es causada por algún fenómeno relacionado con su propia rotación. Se dan casos de estrellas con manchas solares de proporciones extremas, que afectan su brillo aparente, o estrellas que, por tener una velocidad de rotación muy elevada, tienen forma elipsoidal.

Estos sugrupos se pueden dividir en varios tipos más específicos, los cuales generalmente obtienen su designación del nombre de la estrella prototípica. Por ejemplo, las novas enanas son llamadas estrellas U Geminorum, pues la primera estrella de este tipo en ser identificada fue U Geminorum.

Documental sobre agujeros negros


Agujeros negros

Agujeros negros

El nombre de oyo negro o agujero negro fue inventado por el astrofísico John Wheeler en 1969 para describir cierto tipo de objeto astrofísico. Desde entonces, dicha expresión se ha usado frecuentemente como metáfora, a menudo inapropiadamente. Estos enigmáticos objetos también se han convertido en estrellas de la literatura fantástica y de ciencia ficción, sin duda gracias a su sugestivo nombre y sus extrañas propiedades. Quien sienta curiosidad acerca de este tema posiblemente se haya topado con misteriosos embudos, túneles del tiempo, singularidades y otras temibles aberraciones. Muchas pretendidas obras de divulgación parecen más relatos fantásticos que intentos de explicar un concepto esencialmente simple.